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Abstract. A nonlinear change of basis allows us to show that the non-standard guantum
deformation of the (3+ 1) Poincaé algebra has a bicrossproduct structure. Quantum universal
R-matrix, Pauli-Lubanski and mass operators are presented in the new basis.

The aim of this letter is to prove that the non-standard quantum deformation of #hé)(3
Poincaé algebra [1], the so-called null-plane quantum Poiacidgebra, can be endowed
with a structure of bicrossproduct Hopf algebra [2]. Such a structure was used some years
ago by Majid [3] as an approach to physics at the Planck scale. The algebraic structure of
the example worked out in [2, 3] is characterized by

[p.x]=1-¢€" AX)=1®@x+x®1 Ap)=pRe " +1Qp (1)
and with triangular quantunR®-matrix
R = e®reg P®, (2)

The null-plane quantum Poindalgebra is one of the three known deformed Hopf
structures supported by the Poingaigebra. It is a triangular Hopf algebra whereasithe
Poincaé [4-6] and thez-Poincaé [7] are quasitriangular ones. The null-plane formulation
has a dynamical meaning, hence this scheme is not only relevant from a kinematical point
of view. The quantum null-plane algebra was proposed for the study of deformed physical
systems whose natural framework is the null-plane; for instance, systems in the infinite
momentum frame approach, gauge-field theory on null-planes, hadronic spectroscopy, etc
(see [1] and references therein).

After the proofs by Majid and Ruegg [8] that the 431) «-Poincaé algebra has a
bicrossproduct structure, and more recently by&ragaet al [9] that theg-Poincaé in any
dimension also has this kind of structure, it only remains to see if the same bicrossproduct
structure is exhibited by the (8 1) null-plane quantum Poindar In [10] it was shown
that the (14 1) null-plane quantum Poindaf11] also shares this structure, however, this
lower-dimensional case does not indicate the procedure for th&)(8ase, i.e. the nonlinear
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change of basis that allows us to display the bicrossproduct structure. Note that in all the
three mentioned deformations, the formal decomposition is the same, i.e.

Uy(P(B+ 1) = U(so(3, 1)’raa U, (Ta)
following the same pattern of the classical algebra or group counterpart
PB+1)=S0GB,1H0OT,

and with the sector of the translations deformed (differently in each case, of course) and
the Lorentz transformation sector non-deformed.

On the other hand, an example of this kind of decomposition appeared some years ago
in [12], U (su(2))?4,C(R3) whereC (R®) is the Hopf algebra of functions defined &d.

The generators of the (3+1) PoinéaalgebrgP (3 + 1) in the so-called null-plane basis
[13] are

(P, P_,P,E, Fi,K3 J3;i =12} 3

where P,, P_, E; and F;, are expressed in terms of the usual kinematical ones
{H,P,K;, J;;1=1,2,3} by

P+=(H+P3)/2 P_.=H—P; E1=(K1+J2)/2

F1=Ki—J> F, =K+ /1 E; = (K2 — J1)/2. )
Hence, the Lie brackets d?(3+ 1) are (hereafter, j = 1, 2):

[K3, Ei] = E; [K3, Fi] = —F; [K3, J3] =0

[J3, Ei] = —e&ij3E; [J3, Fi] = —¢ij3F; [E1, E2] =0 (5)

[Ei, F;] = 6;j K3+ €ij3J3 [F1, F2] =0

[P, P]=0 w,v=+,—,12 (6)

[Ks, Pi] = Py [Ks, P-] = —P- [K3, P] =0

[J3, Pi] = —&ij3P; [J3, Py] =0 [J3, P-]=0 %

[Ei, Pi] = 6;; Py [Ei, P-]= P [Ei, P ]=0

[Fi, P] =6;; P [Fi, Py] = P, [Fi, P-]1=0

whereg;j; is the completely skew-symmetric tensor.

The semidirect product structure of theK2) Poincaé group, isomorphic téd SO (3, 1),
can be clearly pointed out. The six generatffs, F;, K3, J3} close the Lorentz subgroup
SO(3,1) (5), while the four remaining P, P_, P;} generate the Abelian subgrodp (6).
Therefore, as is well known,SO(3,1) = SO(3,1) © Ta.

A triangular or non-standard quantum deformatiori?g8 + 1) was introduced in [1] in
the null-plane framework mentioned above, whose Hopf structure we rewrite here for the
sake of completeness and to clarify our main result. Let us denote the null-plane generators
X displayed in (3), byX, and the deformation parameter by
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Coproduct:
AX)=10X+X®1 for X € {P,, E;, J3}
A= 7 +7 @&l for ¥ e {P_, B}
A(Fy) = et QF+F® eh + Zefzﬁ*bfl QP —iP.® Elez‘6+
+7e P @ P — P ® fse'HS*

> By o B L B P | e iPe B o B 2P o BiP ®)
AF)=e" QR+ FRLee " +7e “""E;® P —ZP_Q Exe'~
—28721er j3 X ﬁl + Zﬁl ® j3€21:7+
AKy) =eP @Rs+ Ks@ & + 76 E @ P — 1P @ B
+ie P E, @ Py — 1Py @ En67
Co-unit and antipode:
eX)=0 y(X) = —¥P X %P for X € {Ps, P;, E;, F;. K3, J3). 9)
Non-vanishing Lie brackets:
. sinhz P - - - . . .
[Ka, P = 0 [Rs, P.] = —P_coshiP,  [Ka, Ei] = E; coshé P,
[Ks, F1] = —F1COSNE P, + ZE1 P_sinhiPy — 72P,W?
[kg, ﬁz] = —Fz COShzﬁ_;,_ =+ ZEzi)_ sinh2f’+ + sz’lvf/j
[J3, P] = —¢ij3P; [J3, Ei] = —¢ij3E; [J3, Fi] = —&ij3F; (10)
L sinhz P - . .
[E Bl=8;———  [F.P]=0;P_coshzP,
[E;, Fj] = 8;jK3 + &ij3J3 COSE Py, [Py, F]=—P
[F1, F>] = Z2P_W5 + ZP_J3sinhz P, [P_,E]=—P
where W is a component of the deformed Pauli-Lubanski vector defined as
N .~ . .~ .sinhzP,
Wj_ =FE1Pp— EsP1+ J3——. (11)
Z

In the following we show that this quantum algebra has a bicrossproduct structure [2].
Let us consider the map defined by:

P, =P, E; = E J3=Js 1=2%
P_ = _zibrﬁ, P, = e_2ﬁ+ﬁ[
F = efﬂ;*(ﬁl —ZE P —7J3Py) (12)

F, = e’f’;+(1:’2 — 25213_ + Zj,?,ﬁl)
K3 = eﬁﬂ;* (153 — Zﬁlﬁl - ZEZﬁ2)~

By applying (12) to the Hopf algebr&:(P(3 + 1)), whose relations appear displayed
in expressions (8)—(10), we obtain the Hopf algebtdP(3 + 1)), characterized by the
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following coproduct, co-unit, antipode and commutation relations:

AX)=1®X+X®1 X € Py, E:, J3)
AY)=e"@Y+Y®1 Y e {P_, P}

AF)=€e""@FR+F®1—7P. ®E1—z7P,® J3 (13)
AF) =" @R+ FR®1-—zP-QE+zP1® J3

AKz) =" @K+ K3®1—zPLQE1 —zP,Q E;

€e(X)=0 X € {Ps, P, Ej, Fy, K3, J3} (14)
y(X)=-X X e{Py, E;, J3}

y(¥) = -y Y € {P_, P}

. (15)
y(F1) = —€"*(F1+zP_E1+ zP>J3)
y(Fo) = =€ (Fa 4+ 2P_E2 — 2P1J3) y(K3) = —€"* (K3 + 2 PLE1 + 2 P2 E>)
[K3, Ei] = E; [K3, Fi] = —F; [K3, J3] =0
[J3, Ei] = —&ij3E; [J3, Fi] = —&ij3F; [E1, EJ] =0 (16)
[Ei, Fj] = 8;; K3+ €ij3J3 [F1, F2] =0
[P;L5P1)]:O Myv=+’_5172 (17)
1—e b Z
[Ks P =~ [Ks, P-]=—P = J(P{ + ;)
[K3, P]= (" =P, [J3, P1]=0 [/3, P]=0
[J3, P;] = —&ij3P; [Ei, P_.]=P; [E;, Py]=0 (18)
1—e P
[Ei, Pl=08ij— [Fi, Pi] = P, [Fi, P-] = —zP; P_
: z

Z
[F., P = —2P.P; + 68 (e*zP+P, + (PP + P22)) .

Note that the translation generatot®,, P_, P;} define a commutative but non-
cocommutative Hopf subalgebra of (P(3+ 1)) denotedU, (73), and the Lorentz sector is
non-deformed at the algebra level.

Note the resemblance between the triangular Hopf algBBea, R, whose structure is
displayed in (1), and the expressions for the generaarand P,.. This similitude is more
transparent in thél + 1) null-plane quantum Poincaralgebra [10, 11].

Let us now consider the non-deformed Lorentz—Hopf algéb¢en(3, 1)) spanned by
the generator§E;, F;, K3, J3} with classical commutation rules (5) and primitive coproduct:
AX)=1® X + X ® 1. We define a right action

a:U(Ts) @ U(s0(3,1)) — U.(7a) (19)
as

a(X®Y)=X Y =[XY] X € {Ps, P} Y € {E;, F;, K3, J3} (20)
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explicitly
-1 Zip2 p2
a(PL ® K3) = . 06(P7®K3)=P7+5(P1 + P3)
WP ®@Ks)=(1—e* )P a(Py®J)=0  «(P-®J3)=0
(P ® J3) = ¢ij3P; a(P-QE;)=—P a(PL®E)=0 (21)
e P —1
a(P;®Ej) =68;—— a(Py @ F;) =—P a(P_® F;) =z P P_
z

(P, ® F)) = 2Py = 8 (€57 P+ (P2 + PD).
The extension to the enveloping algebra is made taking into account the fact that
(ab) <h = (a<ha)(b < hg) a <1 (hk)y=(a<ah) <k (22)
where
Ah) =Y "ha ® he a,b e U.(Ty) and h,k € U(so(3, 1)).
Also we define a left coaction
B:U(s0@3, 1) - U, (Ty) ® U(s0(3, 1)) (23)
by
B(J3) =1® J3 B(E)=1QE;
B(F1) =" QF —zP.®E1—zP,® J3
B(F) =€ @F,—zP_-®E;+zP1® J3
B(K3) =€ @Ky —zPIQ E1 — 7P, ® E>
for the Lie generators afo(3,1). In general, the coaction is not a homomorphism. The
extension of the above definition to all the elementd/dfo(3, 1)) is made by means of
the canonical projections : U, (P(3+ 1)) — U(so(3,1)) andp : U,(P(3+ 1)) — U,(7a)
using the expression
B (h)) = Zp(ha))y(p(h(s))) ® 7w (h) Vh € U(so(3, 1)) (25)
where(1®A)oA(h) = Y ha)®ho®hs), andy is the antipode for the Hopf algebta (7s).
Note thatr is a Hopf algebra projection angl a co-algebra homomorphism [8, 14]. It can
be shown that the right actianand left coactiorg fulfil the compatibility conditions [2] in
such a manner that/,(73), «) is a rightU (so(3, 1))-module algebra an@U (so(3, 1)), B) is
a left U, (73)-comodule co-algebra. We summarize the previous discussion in the following

theorem, which is the main result of this letter together with the nonlinear basis change
(12).

(24)

Theorem.The null-plane quantum Poiné&algebra has the bicrossproduct structure
U.(P(3+1) = U(s0(3, 1)) o U, (Ta). (26)

We would like to stress that the map (12) is invertible, so:

P, =P, E, = E; J3=J3 7=12/2
P_=¢&M/2p_ P, = &P/?p,
Fy =& 2(Fy+ 2(ErP- + J3P)/2) (27)

Fy = &P/2(Fy + 2(E2P- — J3P1)/2)
K3 = €"/2(K3+ z(E1P1 + E2P5)/2).
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This fact can be applied to reproduce in the bicrossproduct basis the physically relevant
operators introduced in [1] such as Casimirs, spin, Hamiltonians and position operators. In
particular, the deformed square of the maﬁﬁ is now

ehr—1

M2 =2pP_ — (PE+ PHE (28)

and the square of the Pauli-Lubanski operaigrturns out to be

W2 = (Wi 4+ (Wj3)? + coshiz Py /2) (W W? + W2W3) — 22M2(W3)?/4 (29)
where
P el —1 Z P
i%:KgP,-eZ +_+_E5P7_F'l. '|'E(E‘]_[)l—i_E‘ZI)Z)PI'eZJr
A efr —1
+(—=1'J3P3_; 5 i=12
el 41
Wi = (F1P — FzPl)eZP+ + J3P_ 2+ + g(Ele - EZPI)I:LeZP+ (30)
+§J3(Pf + PHEr
sinh(z P,./2
W2 = (E1Pp — EoP)Er /2 + J3h(z/2+/).
Z

The second-order Casimir (28) would give rise to a deformeddlohger equation in the
same way as in [1, 15], while the Pauli-Lubanski vector (30) would allow us to derive
guantum Hamiltonians and spin operators. However, it is clear that although the Hopf
algebra structure ot/,(P(3 + 1)) is rather simplified in this new basis, the associated
operators adopt a much more complicated form than the original ones.

The map (12) resembles the one given in [16] which allowed us to deduce a (factorized)
null-plane quantum universak-matrix: both mappings are related by the interchange
e P+ & €+, Hence, the universak-matrix now reads

R = explzE> ® €™ Py} explzE1 @ €7+ P} exp{—z P, @ €7+ K3} explz€+ K3 ® P}
X exm—zéP+P1 ® E1} exp{—zeZP+P2 ® E>}. (31)

Therefore, each basis seems to be useful for a specific purpose and we do not find any
privileged basis to express the whole quantum Poiedgebra together with its associated
elements (universak-matrix, quantum Casimirs, etc).

In the particular case ofl + 1) dimensions [11] the triangular quantuRrmatrix is
analogous to (2). On the other hand, tRematrix (31) restricted to the generataks and
P, is also in agreement with (2) up to a basis change. This fact together with the remark
pointed after equation (18) show that, in some sense, the Hopf algebra introduced in [2, 3]
lies on the basements of the algebraic structure of the null-plane Pointhis opens new
possibilities for applying null-plane Poind@to physics.

Finally to mention that the null-plane case (& + 1) dimensions [15] also exhibits
this bicrossproduct structure. It looks promising to use this bicrossproduct structure of the
guantum algebras in order to study by duality the corresponding quantum groups. Work in
this direction is in progress and will be published elsewhere.

This work was partially supported by the DiregniGeneral de En§anza Superior (DGES
grant PB95-0719) and DGICYT (project PB94-1115) from the Ministerio de Edaagci
Cultura of Spain.
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