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Abstract. A nonlinear change of basis allows us to show that the non-standard quantum
deformation of the (3+ 1) Poincaŕe algebra has a bicrossproduct structure. Quantum universal
R-matrix, Pauli–Lubanski and mass operators are presented in the new basis.

The aim of this letter is to prove that the non-standard quantum deformation of the (3+ 1)
Poincaŕe algebra [1], the so-called null-plane quantum Poincaré algebra, can be endowed
with a structure of bicrossproduct Hopf algebra [2]. Such a structure was used some years
ago by Majid [3] as an approach to physics at the Planck scale. The algebraic structure of
the example worked out in [2, 3] is characterized by

[p, x] = 1− e−x 1(x) = 1⊗ x + x ⊗ 1 1(p) = p ⊗ e−x + 1⊗ p (1)

and with triangular quantumR-matrix

R = ex⊗pe−p⊗x. (2)

The null-plane quantum Poincaré algebra is one of the three known deformed Hopf
structures supported by the Poincaré algebra. It is a triangular Hopf algebra whereas theκ-
Poincaŕe [4–6] and theq-Poincaŕe [7] are quasitriangular ones. The null-plane formulation
has a dynamical meaning, hence this scheme is not only relevant from a kinematical point
of view. The quantum null-plane algebra was proposed for the study of deformed physical
systems whose natural framework is the null-plane; for instance, systems in the infinite
momentum frame approach, gauge-field theory on null-planes, hadronic spectroscopy, etc
(see [1] and references therein).

After the proofs by Majid and Ruegg [8] that the (3+ 1) κ-Poincaŕe algebra has a
bicrossproduct structure, and more recently by Azcárragaet al [9] that theq-Poincaŕe in any
dimension also has this kind of structure, it only remains to see if the same bicrossproduct
structure is exhibited by the (3+ 1) null-plane quantum Poincaré. In [10] it was shown
that the (1+ 1) null-plane quantum Poincaré [11] also shares this structure, however, this
lower-dimensional case does not indicate the procedure for the (3+1) case, i.e. the nonlinear
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change of basis that allows us to display the bicrossproduct structure. Note that in all the
three mentioned deformations, the formal decomposition is the same, i.e.

Uq(P(3+ 1)) = U(so(3, 1))βFJαUq(T4)

following the same pattern of the classical algebra or group counterpart

P(3+ 1) = SO(3, 1)� T4

and with the sector of the translations deformed (differently in each case, of course) and
the Lorentz transformation sector non-deformed.

On the other hand, an example of this kind of decomposition appeared some years ago
in [12], U(su(2))βFJαC(R3) whereC(R3) is the Hopf algebra of functions defined onR3.

The generators of the (3+1) Poincaré algebraP(3+ 1) in the so-called null-plane basis
[13] are

{P+, P−, Pi, Ei, Fi,K3, J3; i = 1, 2} (3)

where P+, P−, Ei and Fi are expressed in terms of the usual kinematical ones
{H,Pl,Kl, Jl; l = 1, 2, 3} by

P+ = (H + P3)/2 P− = H − P3 E1 = (K1+ J2)/2

F1 = K1− J2 F2 = K2+ J1 E2 = (K2− J1)/2.
(4)

Hence, the Lie brackets ofP(3+ 1) are (hereafteri, j = 1, 2):

[K3, Ei ] = Ei [K3, Fi ] = −Fi [K3, J3] = 0

[J3, Ei ] = −εij3Ej [J3, Fi ] = −εij3Fj [E1, E2] = 0

[Ei, Fj ] = δijK3+ εij3J3 [F1, F2] = 0

(5)

[Pµ, Pν ] = 0 µ, ν = +,−, 1, 2 (6)

[K3, P+] = P+ [K3, P−] = −P− [K3, Pi ] = 0

[J3, Pi ] = −εij3Pj [J3, P+] = 0 [J3, P−] = 0

[Ei, Pj ] = δijP+ [Ei, P−] = Pi [Ei, P+] = 0

[Fi, Pj ] = δijP− [Fi, P+] = Pi [Fi, P−] = 0

(7)

whereεijk is the completely skew-symmetric tensor.
The semidirect product structure of the (3+1) Poincaŕe group, isomorphic toISO(3, 1),

can be clearly pointed out. The six generators{Ei, Fi,K3, J3} close the Lorentz subgroup
SO(3, 1) (5), while the four remaining{P+, P−, Pi} generate the Abelian subgroupT4 (6).
Therefore, as is well known,ISO(3, 1) = SO(3, 1)� T4.

A triangular or non-standard quantum deformation ofP(3+1) was introduced in [1] in
the null-plane framework mentioned above, whose Hopf structure we rewrite here for the
sake of completeness and to clarify our main result. Let us denote the null-plane generators
X displayed in (3), byX̃, and the deformation parameter byz̃.
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Coproduct:

1(X̃) = 1⊗ X̃ + X̃ ⊗ 1 for X̃ ∈ {P̃+, Ẽi , J̃3}
1(Ỹ ) = e−z̃P̃+ ⊗ Ỹ + Ỹ ⊗ ez̃P̃+ for Ỹ ∈ {P̃−, P̃i}
1(F̃1) = e−z̃P̃+ ⊗ F̃1+ F̃1⊗ ez̃P̃+ + z̃e−z̃P̃+Ẽ1⊗ P̃− − z̃P̃− ⊗ Ẽ1ez̃P̃+

+z̃e−z̃P̃+ J̃3⊗ P̃2− z̃P̃2⊗ J̃3ez̃P̃+

1(F̃2) = e−z̃P̃+ ⊗ F̃2+ F̃2⊗ ez̃P̃+ + z̃e−z̃P̃+Ẽ2⊗ P̃− − z̃P̃− ⊗ Ẽ2ez̃P̃+

−z̃e−z̃P̃+ J̃3⊗ P̃1+ z̃P̃1⊗ J̃3ez̃P̃+

1(K̃3) = e−z̃P̃+ ⊗ K̃3+ K̃3⊗ ez̃P̃+ + z̃e−z̃P̃+Ẽ1⊗ P̃1− z̃P̃1⊗ Ẽ1ez̃P̃+

+z̃e−z̃P̃+Ẽ2⊗ P̃2− z̃P̃2⊗ Ẽ2ez̃P̃+ .

(8)

Co-unit and antipode:

ε(X̃) = 0 γ (X̃) = −e3z̃P̃+X̃e−3z̃P̃+ for X̃ ∈ {P̃±, P̃i , Ẽi , F̃i , K̃3, J̃3}. (9)

Non-vanishing Lie brackets:

[K̃3, P̃+] = sinhz̃P̃+
z̃

[K̃3, P̃−] = −P̃− coshz̃P̃+ [K̃3, Ẽi ] = Ẽi coshz̃P̃+

[K̃3, F̃1] = −F̃1 coshz̃P̃+ + z̃Ẽ1P̃− sinhz̃P̃+ − z̃2P̃2W̃
z
+

[K̃3, F̃2] = −F̃2 coshz̃P̃+ + z̃Ẽ2P̃− sinhz̃P̃+ + z̃2P̃1W̃
z
+

[J̃3, P̃i ] = −εij3P̃j [J̃3, Ẽi ] = −εij3Ẽj [J̃3, F̃i ] = −εij3F̃j

[Ẽi, P̃j ] = δij sinhz̃P̃+
z̃

[F̃i , P̃j ] = δij P̃− coshz̃P̃+

[Ẽi, F̃j ] = δij K̃3+ εij3J̃3 coshz̃P̃+ [P̃+, F̃i ] = −P̃i
[F̃1, F̃2] = z̃2P̃−W̃ z

+ + z̃P̃−J̃3sinhz̃P̃+ [P̃−, Ẽi ] = −P̃i

(10)

whereW̃ z
+ is a component of the deformed Pauli–Lubanski vector defined as

W̃ z
+ = Ẽ1P̃2− Ẽ2P̃1+ J̃3

sinhz̃P̃+
z̃

. (11)

In the following we show that this quantum algebra has a bicrossproduct structure [2].
Let us consider the map defined by:

P+ = P̃+ Ei = Ẽi J3 = J̃3 z = 2z̃

P− = e−z̃P̃+ P̃− Pi = e−z̃P̃+ P̃i

F1 = e−z̃P̃+(F̃1− z̃Ẽ1P̃− − z̃J̃3P̃2)

F2 = e−z̃P̃+(F̃2− z̃Ẽ2P̃− + z̃J̃3P̃1)

K3 = e−z̃P̃+(K̃3− z̃Ẽ1P̃1− z̃Ẽ2P̃2).

(12)

By applying (12) to the Hopf algebraUz̃(P(3 + 1)), whose relations appear displayed
in expressions (8)–(10), we obtain the Hopf algebraUz(P(3+ 1)), characterized by the
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following coproduct, co-unit, antipode and commutation relations:

1(X) = 1⊗X +X ⊗ 1 X ∈ {P+, Ei, J3}
1(Y) = e−zP+ ⊗ Y + Y ⊗ 1 Y ∈ {P−, Pi}
1(F1) = e−zP+ ⊗ F1+ F1⊗ 1− zP− ⊗ E1− zP2⊗ J3

1(F2) = e−zP+ ⊗ F2+ F2⊗ 1− zP− ⊗ E2+ zP1⊗ J3

1(K3) = e−zP+ ⊗K3+K3⊗ 1− zP1⊗ E1− zP2⊗ E2

(13)

ε(X) = 0 X ∈ {P±, Pi, Ei, Fi,K3, J3} (14)

γ (X) = −X X ∈ {P+, Ei, J3}
γ (Y ) = −ezP+Y Y ∈ {P−, Pi}
γ (F1) = −ezP+(F1+ zP−E1+ zP2J3)

γ (F2) = −ezP+(F2+ zP−E2− zP1J3) γ (K3) = −ezP+(K3+ zP1E1+ zP2E2)

(15)

[K3, Ei ] = Ei [K3, Fi ] = −Fi [K3, J3] = 0

[J3, Ei ] = −εij3Ej [J3, Fi ] = −εij3Fj [E1, E2] = 0

[Ei, Fj ] = δijK3+ εij3J3 [F1, F2] = 0

(16)

[Pµ, Pν ] = 0 µ, ν = +,−, 1, 2 (17)

[K3, P+] = 1− e−zP+

z
[K3, P−] = −P− − z

2
(P 2

1 + P 2
2 )

[K3, Pi ] = (e−zP+ − 1)Pi [J3, P+] = 0 [J3, P−] = 0

[J3, Pi ] = −εij3Pj [Ei, P−] = Pi [Ei, P+] = 0

[Ei, Pj ] = δij 1− e−zP+

z
[Fi, P+] = Pi [Fi, P−] = −zPiP−

[Fi, Pj ] = −zPiPj + δij
(

e−zP+P− + z
2
(P 2

1 + P 2
2 )
)
.

(18)

Note that the translation generators{P+, P−, Pi} define a commutative but non-
cocommutative Hopf subalgebra ofUz(P(3+1)) denotedUz(T4), and the Lorentz sector is
non-deformed at the algebra level.

Note the resemblance between the triangular Hopf algebraRβFJαR, whose structure is
displayed in (1), and the expressions for the generatorsK3 andP+. This similitude is more
transparent in the(1+ 1) null-plane quantum Poincaré algebra [10, 11].

Let us now consider the non-deformed Lorentz–Hopf algebraU(so(3, 1)) spanned by
the generators{Ei, Fi,K3, J3} with classical commutation rules (5) and primitive coproduct:
1(X) = 1⊗X +X ⊗ 1. We define a right action

α : Uz(T4)⊗ U(so(3, 1))→ Uz(T4) (19)

as

α(X ⊗ Y ) ≡ X C Y := [X, Y ] X ∈ {P±, Pi} Y ∈ {Ei, Fi,K3, J3} (20)
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explicitly

α(P+ ⊗K3) = e−zP+ − 1

z
α(P− ⊗K3) = P− + z

2
(P 2

1 + P 2
2 )

α(Pi ⊗K3) = (1− e−zP+)Pi α(P+ ⊗ J3) = 0 α(P− ⊗ J3) = 0

α(Pi ⊗ J3) = εij3Pj α(P− ⊗ Ei) = −Pi α(P+ ⊗ Ei) = 0

α(Pi ⊗ Ej) = δij e−zP+ − 1

z
α(P+ ⊗ Fi) = −Pi α(P− ⊗ Fi) = zPiP−

α(Pi ⊗ Fj ) = zPiPj − δij
(

e−zP+P− + z
2
(P 2

1 + P 2
2 )
)
.

(21)

The extension to the enveloping algebra is made taking into account the fact that

(ab) C h =
∑

(a C h(1))(b C h(2)) a C (hk) = (a C h) C k (22)

where

1(h) =
∑

h(1) ⊗ h(2) a, b ∈ Uz(T4) and h, k ∈ U(so(3, 1)).

Also we define a left coaction

β : U(so(3, 1))→ Uz(T4)⊗ U(so(3, 1)) (23)

by

β(J3) = 1⊗ J3 β(Ei) = 1⊗ Ei
β(F1) = e−zP+ ⊗ F1− zP− ⊗ E1− zP2⊗ J3

β(F2) = e−zP+ ⊗ F2− zP− ⊗ E2+ zP1⊗ J3

β(K3) = e−zP+ ⊗K3− zP1⊗ E1− zP2⊗ E2

(24)

for the Lie generators ofso(3, 1). In general, the coaction is not a homomorphism. The
extension of the above definition to all the elements ofU(so(3, 1)) is made by means of
the canonical projectionsπ : Uz(P(3+1))→ U(so(3, 1)) andp : Uz(P(3+1))→ Uz(T4)

using the expression

β(π(h)) =
∑

p(h(1))γ (p(h(3)))⊗ π(h(2)) ∀h ∈ U(so(3, 1)) (25)

where(1⊗1)◦1(h) =∑h(1)⊗h(2)⊗h(3), andγ is the antipode for the Hopf algebraUz(T4).
Note thatπ is a Hopf algebra projection andp a co-algebra homomorphism [8, 14]. It can
be shown that the right actionα and left coactionβ fulfil the compatibility conditions [2] in
such a manner that(Uz(T4), α) is a rightU(so(3, 1))-module algebra and(U(so(3, 1)), β) is
a leftUz(T4)-comodule co-algebra. We summarize the previous discussion in the following
theorem, which is the main result of this letter together with the nonlinear basis change
(12).

Theorem.The null-plane quantum Poincaré algebra has the bicrossproduct structure

Uz(P(3+ 1)) = U(so(3, 1))βFJαUz(T4). (26)

We would like to stress that the map (12) is invertible, so:

P̃+ = P+ Ẽi = Ei J̃3 = J3 z̃ = z/2
P̃− = ezP+/2P− P̃i = ezP+/2Pi

F̃1 = ezP+/2(F1+ z(E1P− + J3P2)/2)

F̃2 = ezP+/2(F2+ z(E2P− − J3P1)/2)

K̃3 = ezP+/2(K3+ z(E1P1+ E2P2)/2).

(27)
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This fact can be applied to reproduce in the bicrossproduct basis the physically relevant
operators introduced in [1] such as Casimirs, spin, Hamiltonians and position operators. In
particular, the deformed square of the massM2

z is now

M2
z = 2P−

ezP+ − 1

z
− (P 2

1 + P 2
2 )e

zP+ (28)

and the square of the Pauli–Lubanski operatorW 2
z turns out to be

W 2
z = (Wz

13)
2+ (Wz

23)
2+ cosh(zP+/2)(Wz

+W
z
− +Wz

−W
z
+)− z2M2

z (W
z
+)

2/4 (29)

where

Wz
i3 = K3Pie

zP+ + EiP− − Fi e
zP+ − 1

z
+ z

2
(E1P1+ E2P2)Pie

zP+

+(−1)iJ3P3−i
ezP+ − 1

2
i = 1, 2

Wz
− = (F1P2− F2P1)e

zP+ + J3P−
ezP+ + 1

2
+ z

2
(E1P2− E2P1)P−ezP+

+ z
2
J3(P

2
1 + P 2

2 )e
zP+

Wz
+ = (E1P2− E2P1)e

zP+/2+ J3
sinh(zP+/2)

z/2
.

(30)

The second-order Casimir (28) would give rise to a deformed Schrödinger equation in the
same way as in [1, 15], while the Pauli–Lubanski vector (30) would allow us to derive
quantum Hamiltonians and spin operators. However, it is clear that although the Hopf
algebra structure ofUz(P(3 + 1)) is rather simplified in this new basis, the associated
operators adopt a much more complicated form than the original ones.

The map (12) resembles the one given in [16] which allowed us to deduce a (factorized)
null-plane quantum universalR-matrix: both mappings are related by the interchange
e−z̃P̃+ ↔ ez̃P̃+ . Hence, the universalR-matrix now reads

R = exp{zE2⊗ ezP+P2} exp{zE1⊗ ezP+P1} exp{−zP+ ⊗ ezP+K3} exp{zezP+K3⊗ P+}
× exp{−zezP+P1⊗ E1} exp{−zezP+P2⊗ E2}. (31)

Therefore, each basis seems to be useful for a specific purpose and we do not find any
privileged basis to express the whole quantum Poincaré algebra together with its associated
elements (universalR-matrix, quantum Casimirs, etc).

In the particular case of(1+ 1) dimensions [11] the triangular quantumR-matrix is
analogous to (2). On the other hand, theR-matrix (31) restricted to the generatorsK3 and
P+ is also in agreement with (2) up to a basis change. This fact together with the remark
pointed after equation (18) show that, in some sense, the Hopf algebra introduced in [2, 3]
lies on the basements of the algebraic structure of the null-plane Poincaré. This opens new
possibilities for applying null-plane Poincaré to physics.

Finally to mention that the null-plane case in(2 + 1) dimensions [15] also exhibits
this bicrossproduct structure. It looks promising to use this bicrossproduct structure of the
quantum algebras in order to study by duality the corresponding quantum groups. Work in
this direction is in progress and will be published elsewhere.

This work was partially supported by the Dirección General de Enseñanza Superior (DGES
grant PB95-0719) and DGICYT (project PB94-1115) from the Ministerio de Educación y
Cultura of Spain.
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